Transgenic Increase in N-3/N-6 Fatty Acid Ratio Reduces Maternal Obesity-Associated Inflammation and Limits Adverse Developmental Programming in Mice
نویسندگان
چکیده
Maternal and pediatric obesity has risen dramatically over recent years, and is a known predictor of adverse long-term metabolic outcomes in offspring. However, which particular aspects of obese pregnancy promote such outcomes is less clear. While maternal obesity increases both maternal and placental inflammation, it is still unknown whether this is a dominant mechanism in fetal metabolic programming. In this study, we utilized the Fat-1 transgenic mouse to test whether increasing the maternal n-3/n-6 tissue fatty acid ratio could reduce the consequences of maternal obesity-associated inflammation and thereby mitigate downstream developmental programming. Eight-week-old WT or hemizygous Fat-1 C57BL/6J female mice were placed on a high-fat diet (HFD) or control diet (CD) for 8 weeks prior to mating with WT chow-fed males. Only WT offspring from Fat-1 mothers were analyzed. WT-HFD mothers demonstrated increased markers of infiltrating adipose tissue macrophages (P<0.02), and a striking increase in 12 serum pro-inflammatory cytokines (P<0.05), while Fat1-HFD mothers remained similar to WT-CD mothers, despite equal weight gain. E18.5 Fetuses from WT-HFD mothers had larger placentas (P<0.02), as well as increased placenta and fetal liver TG deposition (P<0.01 and P<0.02, respectively) and increased placental LPL TG-hydrolase activity (P<0.02), which correlated with degree of maternal insulin resistance (r = 0.59, P<0.02). The placentas and fetal livers from Fat1-HFD mothers were protected from this excess placental growth and fetal-placental lipid deposition. Importantly, maternal protection from excess inflammation corresponded with improved metabolic outcomes in adult WT offspring. While the offspring from WT-HFD mothers weaned onto CD demonstrated increased weight gain (P<0.05), body and liver fat (P<0.05 and P<0.001, respectively), and whole body insulin resistance (P<0.05), these were prevented in WT offspring from Fat1-HFD mothers. Our results suggest that reducing excess maternal inflammation may be a promising target for preventing adverse fetal metabolic outcomes in pregnancies complicated by maternal obesity.
منابع مشابه
Endogenously decreasing tissue n-6/n-3 fatty acid ratio reduces atherosclerotic lesions in apolipoprotein E-deficient mice by inhibiting systemic and vascular inflammation.
OBJECTIVE To use the fat-1 transgenic mouse model to determine the role of tissue n-6/n-3 fatty acid ratio in atherosclerotic plaque formation. Although it has been suggested that a low ratio of n-6/n-3 polyunsaturated fatty acids (PUFAs) is more desirable in reducing the risk of atherosclerotic cardiovascular disease, the role of tissue n-6/n-3 fatty acid ratio in atherosclerosis has not been ...
متن کاملTransgenic Restoration of Long-Chain n-3 Fatty Acids in Insulin Target Tissues Improves Resolution Capacity and Alleviates Obesity-Linked Inflammation and Insulin Resistance in High-Fat–Fed Mice
OBJECTIVE The catabasis of inflammation is an active process directed by n-3 derived pro-resolving lipid mediators. We aimed to determine whether high-fat (HF) diet-induced n-3 deficiency compromises the resolution capacity of obese mice and thereby contributes to obesity-linked inflammation and insulin resistance. RESEARCH DESIGN AND METHODS We used transgenic expression of the fat-1 n-3 fat...
متن کاملMaternal High Fat Diet Is Associated with Decreased Plasma n–3 Fatty Acids and Fetal Hepatic Apoptosis in Nonhuman Primates
To begin to understand the contributions of maternal obesity and over-nutrition to human development and the early origins of obesity, we utilized a non-human primate model to investigate the effects of maternal high-fat feeding and obesity on breast milk, maternal and fetal plasma fatty acid composition and fetal hepatic development. While the high-fat diet (HFD) contained equivalent levels of...
متن کاملHealth Implications of High Dietary Omega-6 Polyunsaturated Fatty Acids
Omega-6 (n-6) polyunsaturated fatty acids (PUFA) (e.g., arachidonic acid (AA)) and omega-3 (n-3) PUFA (e.g., eicosapentaenoic acid (EPA)) are precursors to potent lipid mediator signalling molecules, termed "eicosanoids," which have important roles in the regulation of inflammation. In general, eicosanoids derived from n-6 PUFA are proinflammatory while eicosanoids derived from n-3 PUFA are ant...
متن کاملMaternal Plasma Phosphatidylcholine Fatty Acids and Atopy and Wheeze in the Offspring at Age of 6 Years
Variation in exposure to polyunsaturated fatty acids (PUFAs) might influence the development of atopy, asthma, and wheeze. This study aimed to determine whether differences in PUFA concentrations in maternal plasma phosphatidylcholine are associated with the risk of childhood wheeze or atopy. For 865 term-born children, we measured phosphatidylcholine fatty acid composition in maternal plasma c...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 8 شماره
صفحات -
تاریخ انتشار 2013